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coupled mode theory at such a large O value fails due to the ap-

proximation. However, strong coupling phenomenon is extrapo-

lated from Fig. 4, which spreads out the stop bandwidth around

point P. The resonant frequency of MSSW (w = co~ + -yL@l/2)

may be also included within stopband. Thus coupled power is ab-

sorbed by the resonance behavior and sharp cut-off of more than

30 dB may be observed.

IV. CONCLUSION

We have proposed a band rejection filter which uses the coupling

between TEM and MSSW modes in the YIG film microstrip line.

Experiments have been performed by using 40 ~m thick YIG film,

400 pm thick GGG and 0.7 mm width strip, and for various dc

magnetic field directions. Sharp notch characteristics of more than

30 dB have been observed at X band, and results are phenomeno-

logically explained with a coupled mode theory.

These characteristics are very useful for magnetostatic wave ap-

plication to band rejection filters at microwave frequency.
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Variational Method for the Analysis of Lossless

Bi-Isotropic (Nonreciprocal chiral)

Waveguides

Ismo V. Linden

Abstract–Equations are derived for the Iongitndinal fields of a prop-
agating mode in the most general straight open waveguide structure
made from the most general lossless linear material whose parameters

are independent of its orientation. This material, also called bi-iso-
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tropic, has the important chiral medium as the reciprocal special case.
Self-adjointness of the differential operator with respect to the hermi-

tian inner product is confirmed. Applying the theory of nonstandard
eigenvahre problems, a variational expression is derived for the sohr-
tion of the waveguide problem. A procedure for its application is dis-
cussed.

1. INTRODUCTION

The chiral medium has raised considerable theoretical interest in

recent years because of its unique properties. In fact, offering an

extra parameter, it gives the possibility of satisfying conditions be-

yond those of isotropic media. Among suggested applications we

may mention realization of reflectionless surfaces, for which there

exist numerous patents [ 1], creating polarization rotating micro-

wave devices without ferrites [2], and interesting antennas, like

closely packed microstrip antennas with less coupling between the

elements [3]. Also there exists a monograph on electromagnetic

in chiral media [4].

The ‘ ‘chiral medium” treated in the literature has mostly been

reciprocal. However, accepting nonreciprocity, we have one more

parameter to deal with and the medium can be called nonreciprocal

chiral or, more generally, hi-isotropic. Such a medium without

chirality was introduced by Tellegen in 1948 to realize a new cir-

cuit element called the gyrator [5]. Wave propagation in a hi-iso-

tropic medium was recently studied by J. C. Monzon [6]. The me-

dium equations can be written in the form [7]

D=eE+ (H, (1)

B=/.LH+~E, (2)

with

{=(X –JK)4G, {=(X +JOJL’G. (3)

For lossless media, the parameters K and x together with ~ and ~

are real, whence ~ = ~*, which case is assumed here. The chirality

parameter K gives the rate of polarization rotation of a linearly po-

larized plane wave, relative to the rate of phase change of the wave

in propagation. The TeHegen parameter x is proportional to the

polarization rotation of a plane wave in reflection from a discon-

tinuity [7].

In the present paper, the electromagnetic problem of wave prop-

agation along a general straight open waveguide of hi-isotropic ma-

terial is formulated in terms of a variational method. A similar

method has been previously derived and applied for dielectric and

corrugated waveguides and labeled as ‘a variational method for

nonstandard eigenvahre problems’ [8]–[1 1]. The nonstandard, or

nonlinear, eigenvalue problem is one which can be written in the

general operator from L(h) ~ = O, where the eigenvalue parameter

h is not necessarily a linear coefficient. The result of this way of

thinking [8] is that any parameter of the problem can be taken as

the eigenvalue parameter A and if it can be solved analytically from

a functional equation, what results is a stationary functional for that

parameter. This is also the procedure followed in this paper for the

hi-isotropic problem.

II. THEORY

The hi-isotropic medium considered here is homogeneous along

one space direction labeled with the z coordinate and a function of

the transverse position vector p = r – Uz (u, . r). Let us asume

that the structure is concentrated close to the z axis and the param-
,
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etersapproach those of the free space for~, = I pl -+ CO. Also let

usonlyconsider waveguide-mode solutions whose fields decay ra-

dially outwards more rapidly than l/fi. This boundary condition

at infinity could also be replaced by suitable conditions at a finite

distance to analyze the closed waveguide.

A. Basic Equations

Tosimplify thenotation inthebeginnin~~, let use write

()E(r)
F(r) =

H(r) ‘
G(r) = (~) (4)

for the two pairs of field vectors. Assuming a propagating wave

solution,

F(r) = [u,j(p) +J(p)]e-jez, (5)

G(r) = [rqg(p) + g(p)] e-’’dz, (6)

() ‘4P)j(p)= ‘(p) , g(p)=(
h(p) )\b(p) ‘

(7)

where$, g involve the longitudinal (Z directed) field components

and~, g, the corresponding transverse components satisfying UZ .

.f= 0, % 4 g = 0. The Maxwell curl equations ina sourceless
region can be written in the form

V X F(r) =jdG(r) =jwJA4(p) F(r). (8)

The medium parameter matrix is defined as

()(E( e
M=

(x – .h) &o
h= (x+jK)& /.4 ) (9)

and

()o –1
J=

10’
(lo)

M( p) is a function of the transverse position vector p. For a loss-

less medium, which is assumed here, the parameters e, ~, x and K

have real values.

B. Equation for the Longitudinal Fields

Let us now eliminate the transverse field components to obtain

equations for the longitudinal components alone. For this, the

Maxwell equations (8) are written as

–j% x j(p) + V X j(p) – U: x vf( p)

= joxqJg( p) + jtiJg( p). (11)

When the components parallel and transverse to Uz are separated,

we have the two equations

u, “ V X f( p) = jwJg(p) = jc0A14f( p), (12)

‘.i@u, x y ( P) – U, x Vf ( P) = jdg( p) = jtiJM_ ( p). (13)

Let us solve for ~ from (13) in terms of $, and substitute this in

(12). Writing (13) in the form

wJMf + @uz x f = (tiJM;, + Bluz x ;) . f = ju, X Vj (14)

where 1 denotes the unit 2 X 2 matrix and it = u. Ux + UyUy is the

transverse unit dyadic, we can solve for f by finding the inverse
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of the dyadic matrix in brackets. Better still, noting that J2 = –L,

(14) can be written as
.
~ . f=: –jJu, x Vf, (15)

~ = wM~, – /3Juz X i

(:LMzt Cofil+ /?uz x 7
——

)

(16)
u(I, — (kz X I W/Lit

Inverting this dyadic matrix is an easy task, because all the dyadic— .==

elements commute. In fast, for a matrix of dyadics ~, B, C and D— —— .—
which all commute: A . B = B . A etc., we have the identity

whence the inverse (left or right) can be written in a form resem-

bling that of a matrix with scalar elements:

For noncommutinlg dyadics this is, however, not true.

The inverse of ( 16) can thus be written in the following form:

-l_=— ~-l “( :C@r

-- (JJ{I, +

.
–W.grt –

puz x 7 weir

13u, x 7)7 (19)

(20)

b’,

(21)

where n denotes the refraction factor G. For isotropic guides

with x = K = O, ,kCplays the role of cutoff wavenumber, because

k = kc implies (? := O.

Looking at the (expression (19), we can further write

~-l = _~-1 “ (wJMTJ;, – @Juz X i). (22)

The transverse fields can now be solved in terms of the longitudinal

fields. From (15) i~nd (19) we have

f= –j~-’J. U, X Vf. (23)

Substituting this in (12) leaves us with an equation for the longi-

tudinal fields alone, which can be written in the form

L(V)f = V o [~-’ o (W~T;f + @Juz X i) . Vf] + d4f = O.

(24)

This equation serves also as a definition of the differential operator

matrix L(V). Written in terms of the longitudinal electric and mag-

netic field components, (24) has the form of two scalar equations
—

V . [~-’ . (ufVe + wfVIZ – @z x v/1)] + ~(~~ + f~) =: 0,

(25)

V . [E’ o (CJ~Vh + w.$Ve + flu, X Ve)] + ~(ph + {e) == O.

(26)

As a check, we see that for an isotropic medium with x = K := O,
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—
we have ~ = k~~t = (Ic2 – (?2)~,, whence (25), (26) reduce to

V . [kc-2 . (ueVe – (3u: X Vh)] + uee = O, (27)

V . [k:z . (o+4V!JZ+ /3uz X Ve)] + C@ = O, (28)

which coincide with previously derived equations in [10]. For ho-

mogeneous media we have the simple equations V 2e + k: e = O

and V2h + k~h = O.

C. The Variational Method

To find a variational expression for the waveguide problem. let

us first define the following hermitian inner product for two pairs

of scalar field functions ~1 = (el h, ) and ~2 = (e2h2 ):

! J
(fI,.fi) = ~.f~fi ds = ~(e~ej + k?hj) ds. (29)

The range of integration S extends over the whole xy plane.

Now it can be shown that the operator L(V), defined in (24), is

self adjoint with respect to this inner product if the medium is loss-

less. In fact, if we write

!
(fl> Uv)fi) = ,f?[v “ (E’ “ (UMTVA + l?.@ x Vfi))

+ coMf2 ] dS, (30)

we can show that each term of the operator has a corresponding

self-adjoint term. Let us study each of the three terms in the inte-

gral individually. Applying the Gaussian integral theorem, accord-

ing to which the divergence terms integrated give line integrals in

the infinity, we can drop these because of the assumed behavior of

the fields in the infinity. Thus, for the three terms we can write

s
OJ ~f~v “ [~-’ . MTVfi] dS

—— —w
!
~ [M~-’T . Vf~] . V~ dS

=(I2
!

v . [~-lT* . MT*vfl]*fidS (31)
s

B ~sf?v . [~-’ . .@z X ~) . VA] dS

. –(3 js [.l~(uz x i)~ . ~-” . Vf~] . VfidS

.— P ~s [v . (J~-’T* “ Uz X V~l]*fi dS, (32)

J !
u sf~(Mfi) dS = u (M’”fi)”.fj dS.

s
(33)

In fact, for a loss less medium with real parameters e, p, x and K,

— . .
the dyadic ~ and, hence ~-‘, is hermitian satisfying ~-‘’* =

T* = M. Thus, in this~-’. Also, the matrix M is hermitian: M

case, in all integrals (3 1)–(33), the operators are self adjoint and,

hence, the whole operator L(V) is self adjoint.

The variational expression can be obtained from the functional

equation [8]

(j L(v)f) = o, (34)

which in this case can be written as

1sf*[V . (~-’ ~ (uMTVf + &htz X Vf)) + uMf] dS = O,

(35)

or, what is equivalent, after partial integrations, as

!
y?f* . ~-l .

!

—

u MTVfdS + /3 sVf” . ~-’ . Ju, X VfdS
s

!= (J sf”MfdS. (36)

It was shown in [8] that, if the functional equation can be solved

for any independent parameter of the problem in terms of the field

f and other parameters, the expression obtained is stationary for the

true solution of the problem. The solvable parameter is called the

(nonstandard) eigenvalue parameter. Thus, at this point we must

find a parameter which can be solved from (36) in algebraic form.

Taking the parameters a and ~ as independent ones shows us that

neither of them can be solved, because of the complicated relation
.

through the dyadic K-‘. However, following the method of refer-

ence [10], we can change to two new parameters u 2 and VP = co/D,

treat them as independent ones and actually solve (36) for the pa-

rameter OJ2. —

To make this, let us write the dyadic ~ as
—

F(&),@= co*z(rlp), (37)

with

—
Z(vp) = ( )--$(.2-~2-K2)-~ T,–2j$u: X7, (38)

P P

where c = 1/~ is the speed of light in vacuum. The functional

equation (36) turns out now to be solvable for ~ 2 in the form

(J2= J(up; f)

! vf* . ~-l .

( )
MTVf dS + ~ .k: X Vf dS

s
.—

s

(39)

f*MfdS
s

Substituting the longitudinal electric and magnetic fields e, ,4 in the

combined field matrix f in (39), the resulting expression for the

functional reads

W2 = J(vP; e, ~)

Pl= r 1 1 —— r 1 7\

!(s ve~ . L-l .
[ 1 LeVe+{Vh– LuZx Vh +Vh*. L-’. pVh+<Ve+:uZx Ve dS

VP VP 1)

(40)——

s[E le12 + plh12 + 2Gt{~eh*} dS
s
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Let us chegk the functional (39) and (40) by studying their special cases for the isotropic guide, i.e., for ~ = ~ = O. Writing L. =
.

(Pe –u~)&and MT= M, we have

j,~~f” 1-MVf +~Vf* . Ju: X Vf dS

J(tiP; f ) = –

!
f*MfdS

J,+[elvel’:plvhl’+ :a{uz.vexvh.l]ds

This expression can be seen to coincide with that given in [10]

(note that the factor 1 /oP in the (21) of the referenced paper is

erroneously missing).

III. DISCUSSION

The functional (39) is exact and presents ati obvious extension

of previously known functional from isotropic to hi-isotropic me-

dia. It can be applied to obtaining approximate mode solutions for

open hi-isotropic waveguides. By approxitnating the longitudinal

field functions, the dispersion function (3(u) can be obtained point

by point. In practice, this can be performed using the following

scheme:

1.

2.

3.

4.

5.

6.

7.

Choose a value for the phase velocity parameter VP.

Find suitable approximating functions for the longitudinal

fields e( p) and h( p), i.e., the matrixf( p), with free param-

eters. Insight on the field distribution of the problem will

help in allowing use of just a few pammeters; otherwise, a

massive computation scheme with a great number of param-

eters is needed.

Optimize values of these parameters so that the functional

J(vP; f ) obtains the stationary value; i.e., its differentiation

with respect to all these parameters is zero. (In case of large

number of parameters this requires use of some optimization

procedure.)

The corresponding parameter values inserted in the longitu-

dinal field expressions give closest approximations to the

fields and the functional value approximates the value of ~ 2.

Now it is eas to determine a point on the dispersion dia-

gram: u = f U’, b = @,.
The transverse field functions corresponding to this point are

obtained from (23).

To find another point, start with anothler value of VP

Thus, the procedure works best when some a priori knowledge of

the longitudinal fields exists, which helps in finding suitable ap-

proximating functions with not too many optimizable parameters.

Obviously, the method is especially attractive for finding the low-

est-order modes with least spatial variation. ‘To find the knowledge

required, it appears necessary to work through some examples with

brute-force technique. This is, however, outside the scope of the

present theoretical study.
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Analysis of Bilateral Fin-Lines on Anisotropic

Substrates

Thinh Quoc Ho and Benjamin Beker

Abstract—A full-wave analysis of the bilateral fin-line on anisotropic
substrates is presented. The supporting medium is characterized si-
multaneously by both nondiagonal second rank [e] and [p] tensors. The
dyadic Green’s function is formed rigorously in tbe discrete Fourier
transformed domain and is used to study the propagation character-
istics of the fin-line, The Green’s function elements are given explicitly
in their closed forms along with the verification of the theory. New data
describing the dispersion properties as functions of the coordinate mis-
alignment are also generated for several substrate materials.

1. lNTRODuCTION

Although the theories of transmission lines on anisotropic struc-

tures are well documented, the major effort thus far has been di-
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