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coupled mode theory at such a large § value fails due to the ap-
proximation. However, strong coupling phenomenon is extrapo-
lated from Fig. 4, which spreads out the stop bandwidth around
point P. The resonant frequency of MSSW (o = wj, + yueM/2)
may be also included within stopband. Thus coupled power is ab-
sorbed by the resonance behavior and sharp cut-off of more than
30 dB may be observed.

IV. ConcLusioN

We have proposed a band rejection filter which uses the coupling
between TEM and MSSW modes in the YIG film microstrip line.
Experiments have been performed by using 40 pm thick YIG film,
400 pm thick GGG and 0.7 mm width strip, and for various dc
magnetic field directions. Sharp notch characteristics of more than
30 dB have been observed at X band, and results are phenomeno-
logically explained with a coupled mode theory.

These characteristics are very useful for magnetostatic wave ap-
plication to band rejection filters at microwave frequency.
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Variational Method for the Analysis of Lossless
Bi-Isotropic (Nonreciprocal chiral)
Waveguides

Ismo V. Lindell

Abstract—Equations are derived for the longitudinal fields of a prop-
agating mode in the most general straight open waveguide structure
made from the most general lossless linear material whose parameters
are independent of its orientation. This material, also called bi-iso-
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tropic, has the important chiral medium as the reciprocal special case.
Self-adjointness of the differential operator with respect to the hermi-
tian inner product is confirmed. Applying the theory of nonstandard
eigenvalue problems, a variational expression is derived for the solu-
tion of the waveguide problem. A procedure for its application is dis-
cussed.

1. INTRODUCTION

The chiral medium has raised considerable theoretical interest in
recent years because of its unique properties. In fact, offering an
extra parameter, it gives the possibility of satisfying conditions be-
yond those of isotropic media. Among suggested applications we
may mention realization of reflectionless surfaces, for which there
exist numerous patents [1], creating polarization rotating micro-
wave devices without ferrites [2], and interesting antennas, like
closely packed microstrip antennas with less coupling between the
elements [3]. Also there exists a monograph on electromagnetics
in chiral media [4].

The “‘chiral medium’’ treated in the literature has mostly been
reciprocal. However, accepting nonreciprocity, we have one more
parameter to deal with and the medium can be called nonreciprocal
chiral or, more generally, bi-isotropic. Such a medium without
chirality was introduced by Tellegen in 1948 to realize a new cir-
cuit element called the gyrator [5]. Wave propagation in a bi-iso-
tropic medium was recently studied by J. C. Monzon [6]. The me-
dium equations can be written in the form [7]

D = ¢E + tH, Y]
B = uH + (E, 2

with
E=(x = J0 Voo, &= 0+ j0) Vitoe,. )

For lossless media, the parameters « and x together with e and u
are real, whence £ = {*, which case is assumed here. The chirality
parameter « gives the rate of polarization rotation of a linearly po-
larized plane wave, relative to the rate of phase change of the wave
in propagation. The Tellegen parameter x is proportional to the
polarization rotation of a plane wave in reflection from a discon-
tinuity [7].

In the present paper, the electromagnetic problem of wave prop-
agation along a general straight open waveguide of bi-isotropic ma-
terial is formulated in terms of a variational method. A similar
method has been previously derived and applied for dielectric and
corrugated waveguides and labeled as ‘a variational method for
nonstandard eigenvalue problems’ [8]-[11]. The nonstandard, or
nonlinear, eigenvalue problem is one which can be written in the
general operator from L(\) f = 0, where the eigenvalue parameter
\ is not necessarily a linear coefficient. The result of this way of
thinking [8] is that any parameter of the problem can be taken as
the eigenvalue parameter A and if it can be solved analytically from
a functional equation, what results is a stationary functional for that
parameter. This is also the procedure followed in this paper for the
bi-isotropic problem.

II. THEORY

The bi-isotropic medium considered here is homogeneous along
one space direction labeled with the z coordinate and a function of
the transverse position vector p = r ~ u,(u, - r). Let us asume
that the structure is concentrated close to the z axis and the param-
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eters approach those of the free space forp = | p| — . Also let
us only consider waveguide-mode solutions whose fields decay ra-
dially outwards more rapidly than 1/ \/; . This boundary condition
at infinity could also be replaced by suitable conditions at a finite
distance to analyze the closed waveguide.

A. Basic Equations
To simplify the notation in the beginning, let use write
"E(r) D(r)
Fr) = < > Gr) = l/ > @
H(r) \B()

for the two pairs of field vectors. Assuming a propagating wave
solution,

R = [u.f(p) + f(p)le 7, (5)

G(r) = [u,g(p) + g(p)le ¥, ©
_[ep L p)>
F(p) <h(p)>, 8 (\b(,,) :
e(p) /d( p>>

= , = s 7

o) <h(p)> g(p) (\b(p) 0

where f, g involve the longitudinal (z directed) field components
and f, g, the corresponding transverse components satisfying u, -
f=0,u, - g =0. The Maxwell curl equations in a sourceless
region can be written in the form

V X Fr) = juJG(r) = joIM(p) F(r). ®)
The medium parameter matrix is defined as

= <e £> _ <e x — j®) \/uoeo> -
ou x +jR)Vp.€, p

and
(10)

M( p) is a function of the transverse position vector p. For a loss-
less medium, which is assumed here, the parameters e, u, x and k
have real values.

B. Equation for the Longitudinal Fields

Let us now eliminate the transverse field components to obtain
equations for the longitudinal components alone. For this, the
Maxwell equations (8) are written as

—jBuz Xf(P) +V Xf(l)) —u X Vf(P)
= Jou Jg(p) + jolg(p). (1)

When the components parallel and transverse to , are separated,
we have the two equations

u: - VX f(p) =jutg(p) = juIlMf(p), (12)
—jBu, X f(p) — u, X Vf(p) = juJg(p) = juIMf(p). (13)

Let us solve for f from (13) in terms of f, and substitute this in
(12). Writing (13) in the form

WIMF + Bu, X f = (IMI, + Blu, X I) - f = ju, X V£, (14)

where [ denotes the unit 2 X 2 matrix and ;, = u,u, + uyu, is the
transverse unit dyadic, we can solve for f by finding the inverse
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of the dyadic matrix in brackets. Better still, noting that J? = —L,
(14) can be written as

D-f=—jju, x Vf, (15)
D = wMl, — Blu, x
we; 13 ; + Bu, x 7
- :t - Ezt z ) (16)
wll, — Bu, x I oul,

Inverting this dyadic matrix is an easy task, because > all the dyadic

elements commute. In fact, for a matrix of dyadics 4, B, C and D
which all commute: 4 - B = B - A etc., we have the identity

373) D -B = 5 10> -
¢cp) \-t 7/)°¢ 0 1)

whence the inverse (left or right) can be written in a form resem-
bling that of a matrix with scalar elements:

4 B\ - = D —-B
3 =(A4- o)t _z 3/ (18)

For noncommuting dyadics this is, however, not true.
The inverse of (16) can thus be written in the following form:

~wtl, ~ Bu; X 1>’ 19

wel,

il
Syl

ol
Sy il

—1 — ;—I . wp‘=lf _
—wfl, + Bu, X I

= = = = 1 =
= k%I — 2jk X1, KM= —— k7
K = kil — 2jk,xfu. , =k © (20)

K=k = B2 = k207 + &) = K20n® — X7~ ) — 7,
1)

=1

where n denotes the refraction factor «/ﬁ For isotropic guides
with x = & = 0, k, plays the role of cutoff wavenumber, because
k = k_implies B = 0.

Looking at the expression (19), we can further write

D' = —K' - (WML, — Blu, X ). 22)
The transverse fields can now be solved in terms of the longitudinal

fields. From (15) and (19) we have

f=—D\J - u, xS
Substituting this in (12) leaves us with an equation for the longi-
tudinal fields alone, which can be written in the form

23)

L=V (K™ @MT], + BJu, X I) - Vf] + wMf = 0.
(24)

This equation serves also as a definition of the differential operator
matrix L(V). Written in terms of the longitudinal electric and mag-
netic field components, (24) has the form of two scalar equations

V- [K™ - (weVe + wiVh — Bu, X VI)] + w(ce + £h) = 0,
(25)

Ve [K™' " (@uVh + Ve + Bu, X Ve)] + w(uh + fe) = 0.
(26)

As a check, we see that for an isotropic medium with x =k =0,
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we have ; = k%;, = (k? - ,82);,, whence (25), (26) reduce to
27
(28)

V- k2 (weVe — Bu, X VA)] + wee = 0,

V- [k? (wpVh + Bu. X Ve)] + wph =0,

which coincide with previously derived equations in [10]. For ho-
mogeneous media we have the simple equations VZe + ke = 0
and V2h + k2h = 0.

C. The Variational Method

To find a variational expression for the waveguide problem, let
us first define the following hermitian inner product for two pairs
of scalar field functions f; = (e i) and fo = (e hy):

(fufo) = szl*fz ds = SS (ef'e, + hihy)ds. (29
The range of integration § extends over the whole xy plane.

Now it can be shown that the operator L(V), defined in (24), is
self adjoint with respect to this inner product if the medium is loss-
less. In fact, if we write

(fi, LM f) = szi“[v (KT @MV + BTu, X V)

+ wMfy] ds, 3o
we can show that each term of the operator has a corresponding
self-adjoint term. Let us study each of the three terms in the inte-
gral individually. Applying the Gaussian integral theorem, accord-
ing to which the divergence terms integrated give line integrals in
the infinity, we can drop these because of the assumed behavior of
the fields in the infinity. Thus, for the three terms we can write

o sz;*v - [K7' - M7V dS

—w SS MK ~'T - Vf*] - Vf, dS

= Lv CIK"'TE - MTEVE % dS G1)
8 sz;*v IR - J, X D) - Vfy]dS

= -8 SS W@, x DT - KT - Vf¥] - Vf, dS

=3 SS [V - UK~'T% - u, X Vf,]*f, dS, (32)

@ szi"(Mfz) s = w SS (MT*f)*f, dS. (33)

In fact, for a lossless medium with real parameters e, u, x and «,

J(w,; e, h)

Ss (w* T {

1
eVe + {Vh — —u, X Vh
Up
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the dyadic K and, hence K™, is hermitian satisfying K ~'™* =

K~!. Also, the matrix M is hermitian: M™* = M. Thus, in this
case, in all integrals (31)-(33), the operators are self adjoint and,
hence, the whole operator L(V) is self adjoint.

The variational expression can be obtained from the functional
equation [8]

(L, L) f) =0,

which in this case can be written as

(34

sz*[v (K7 (eMTYf + Blu, X Vf)) + wMf]dS =0,

(35)

or, what is equivalent, after partial integrations, as

w g vfE - K- MTVfdS + 8 S Vf*® - K- Ju, X VfdS
N N

= w sz*Mde. (36)
It was shown in [8] that, if the functional equation can be solved
for any independent parameter of the problem in terms of the field
fand other parameters, the expression obtained is stationary for the
true solution of the problem. The solvable parameter is called the
(nonstandard) eigenvalue parameter. Thus, at this point we must
find a parameter which can be solved from (36} in algebraic form.
Taking the parameters  and § as independent ones shows us that
neither of them can be solved, because of the complicated relation
through the dyadic K~'. However, following the method of refer-
ence [10], we can change to two new parameters w? and v, =w/B,
treat them as independent ones and actually solve (36) for the pa-
rameter >,

To make this, let us write the dyadic ; as
K(w, B) = «*L(v,), @37

with

1 =
Up

apa 2jc—"u—uZ x 1, (38)

= 1,
L(v,) = <2‘2‘ (n* = x> —«?) -
P

where ¢ = 1/vu,¢, is the speed of light in vacuum. The functional
equation (36) turns out now to be solvable for w? in the form

J,; )
S vfE Lo - <M
M

sz*Mde

2
w

I

1
vfds + U—Ju: X Vf> ds
f4

(39

Substituting the longitudinal electric and magnetic fields e, # in the
combined field matrix f in (39), the resulting expression for the
functional reads ‘

1
uVh + Ve + —u, X Ve

}+Vh*-1=f‘-[
Up

J,telef + a1

)

(40)
B? + 2® { teh*} dS
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Let us check the functionals (39) and (40) by studying their special cases for the isotropic guide, i.e., for £ = { = 0. Writing L=

(ue — v})l,and M7 = M, we have

1 1
__.___V*.MV —_ L I
gs‘ue—vz[f f+va

14

Ju, X ‘Vf} ds
P

J(w, f)

sz*Mde

S 1
spe — v

2
14

2
[e|Ve|2 + | VR + = R, « Ve x Vh*}}ds
P

@1

Ss (ele]* + u|n|®) dS

This expression can be seen to coincide with that given in [10]
(note that the factor 1/v, in the (21) of the referenced paper is
erroneously missing).

III. Discussion

The functional (39) is exact and presents ar obvious extension
of previously known functionals from isotropic to bi-isotropic me-
dia. It can be applied to obtaining approximate mode solutions for
open bi-isotropic waveguides. By approximating the longitudinal
field functions, the dispersion function 8(w) can be obtained point
by point. In practice, this can be performed using the following
scheme:

1. Choose a value for the phase velocity parameter v,

2. Find suitable approximating functions for the longitudinal
fields e( p) and A( p), i.e., the matrix f ( p), with free param-
eters. Insight on the field distribution of the problem will
help in allowing use of just a few parameters; otherwise, a
massive computation scheme with a great number of param-
eters is needed.

3. Optimize values of these parameters so that the functional
J(v,; f) obtains the stationary value; i.e., its differentiation
with respect to all these parameters is zero. (In case of large
number of parameters this requires use of some optimization
procedure.) ‘

4. The corresponding parameter values inserted in the longitu-
dinal field expressions give closest approximations to the
fields and the functional value approximates the value of w?.

5. Now it is easy to determine a point on the dispersion dia-
gam: » = Vw?, § = wv,.

6. The transverse field functions corresponding to this point are
obtained from (23).

7. To find another point, start with another value of v,

Thus, the procedure works best when some a priori knowledge of
the longitudinal fields exists, which helps in finding suitable ap-
proximating functions with not too many optimizable parameters.
Obviously, the method is especially attractive for finding the low-
est-order modes with least spatial variation. To find the knowledge
required, it appears necessary to work through some examples with
brute-force technique. This is, however, outside the scope of the
present theoretical study.
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Analysis of Bilateral Fin-Lines on Anisotropic
Substrates

Thinh Quoc Ho and Benjamin Beker

Abstract—A full-wave analysis of the bilateral fin-line on anisotropic
substrates is presented. The supporting medium is characterized si-
multaneously by bath nondiagonal second rank [e] and [ 4] tensers. The
dyadic Green’s function is formed rigorously in the discrete Fourier
transformed domain and is used to study the propagation character-
istics of the fin-line. The Green’s function elements are given explicitly
in their closed forms along with the verification of the theory. New data
describing the dispersion properties as functions of the coordinate mis-
alignment are also generated for several substrate materials.

I. INTRODUCTION

Although the theories of transmission lines on anisotropic struc-
tures are well documented, the major effort thus far has been di-
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